organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

2,2'-(Diselane-1,2-diyl)dinicotinamide *N*,*N*'-dimethylformamide disolvate

Aixia Feng, Ying Xu and Xuehong Wei*

School of Chemistry and Chemical Engineering, Shanxi University, Shanxi Province, People's Republic of China Correspondence e-mail: xhwei@sxu.edu.cn

conespondence e man: xiwer@sxu.edu.en

Received 23 March 2010; accepted 24 April 2010

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.005 Å; R factor = 0.036; wR factor = 0.097; data-to-parameter ratio = 14.3.

The asymmetric unit of the title compound, $C_{12}H_{10}N_4O_2Se_2$ - $2C_3H_7NO$, contains two solvent molecules and two half molecules of the dinicotinamide, each of which sits on a center of symmetry passing through the middle of the Se–Se bond. In each molecule, the two pyridyl groups and diseleno group are approximately coplanar (r.m.s. deviations from planarity for all non-H atoms = 0.011 and 0.008 Å in the two molecules). Intermolecular N–H···O hydrogen bonds stablilize the crystal packing.

Related literature

For the potential applications of organoselenium compounds in organic synthesis, as precursors for semiconducting materials and in ligand chemistry and biochemistry, see: Mugesh *et al.* (2001). For related diselenide compounds, see: Bhasin & Singh (2002); Kienitz *et al.* (1996).

Experimental

Crystal data

 $\begin{array}{lll} C_{12} H_{10} N_4 O_2 S e_2 \cdot 2 C_3 H_7 NO & \gamma = 95.833 \ (3)^{\circ} \\ M_r = 546.34 & V = 1139.3 \ (4) \ \text{\AA}^3 \\ \text{Triclinic, } P\overline{1} & Z = 2 \\ a = 7.6101 \ (17) \ \text{\AA} & \text{Mo } K\alpha \text{ radiation} \\ b = 12.318 \ (3) \ \text{\AA} & \mu = 3.28 \ \text{mm}^{-1} \\ c = 13.420 \ (3) \ \text{\AA} & T = 298 \ \text{K} \\ \alpha = 114.175 \ (2)^{\circ} & 0.30 \times 0.20 \times 0.20 \ \text{mm} \\ \beta = 91.017 \ (3)^{\circ} \end{array}$

Data collection

Siemens SMART CCD diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{min} = 0.439, T_{max} = 0.560$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.036$	275 parameters
$wR(F^2) = 0.097$	H-atom parameters constrained
S = 1.03	$\Delta \rho_{\rm max} = 0.38 \text{ e } \text{\AA}^{-3}$
3937 reflections	$\Delta \rho_{\rm min} = -0.73 \ {\rm e} \ {\rm \AA}^{-3}$

3937 measured reflections

3937 independent reflections

3359 reflections with $I > 2\sigma(I)$

Table 1

Hydrogen-bond	geometry	(Å,	°)
---------------	----------	-----	----

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
N1-H1A···O4	0.86	2.09	2.946 (4)	170
$N1 - H1B \cdots O3$	0.86	2.03	2.869 (5)	163
$N3-H3B\cdots O4$	0.86	2.10	2.919 (4)	158
$N3-H3A\cdotsO1^{i}$	0.86	2.31	3.081 (4)	150

Symmetry code: (i) -x, -y + 1, -z + 1.

Data collection: *SMART* (Siemens, 1996); cell refinement: *SAINT* (Siemens, 1996); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXL97*.

We thank the SNSF (Nos. 2008011021 and 2008012013-2) and the Homecoming Foundation of Shanxi Province for support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FL2299).

References

Bhasin, K. K. & Singh, J. (2002). J. Organomet. Chem. 658, 71–76.
Kienitz, C. O., Tho1ne, C., and Jones. P. G. (1996). Inorg. Chem. 35, 3990–3997.
Mugesh, G., Mont, W.-W. & Sies, H. (2001). Chem. Rev. 101, 2125–2179.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.
Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Acta Cryst. (2010). E66, o1216 [doi:10.1107/S1600536810015047]

2,2'-(Diselane-1,2-diyl)dinicotinamide N,N'-dimethylformamide disolvate

A. Feng, Y. Xu and X. Wei

Comment

Organoselenium compounds have attracted much atention because of their potential applications in organic synthesis, precursors for semiconducting materials, ligand chemistry and biochemistry (Mugesh *et al.*, 2001). During the past decade, many organoselenium compounds have been synthesized and well characterized. In contrast to alkyl, aryl, and mixed alkylaryl senium compounds, the pyridyl selenium compounds are still rare.

The unit cell contains two nicotinamide molecules and four of the solvent molecules. The asymmetric unit contains two solvent molecules and two half molecues of the nicotinamide each of which sits on a center of symmetry passing through the middle of the Se—Se bond (Fig. 1). In (I), the two independent nicotinamides (molecule A containing Se1 and molecule B containing Se2) have comparable conformations. In each nicotinamide, the two pyridyl groups and the diseleno group are approximately coplanar (r.m.s. deviations from planarity for all non-H atoms are 0.011 and 0.008Å for molecules A and B, respectively while the two CONH₂ groups are rotated out of this plane by 11.0 (5)° and 18.6 (5)° for molecules A and B, respectively. Fig. 2 shows the sheets of molecules formed by intermolecular N-H…O hydrogen-bond interactions between the nicotinamides and neighbouring solvents with distances between 2.869 (5) and 3.081 (4) Å (Table 1).

The structure of (I) is similar to that of other diselenide compounds (Kienitz, *et al.* 1996; Bhasin and Singh 2002). The two neighbouring pyridyl groups can be brought into register by rotation about the Se—Se bond. The commonly observed approximate coplanarity of the rings and the Se—Se bonds (C—C—Se—Se or N—C—Se—Se torsion angles ca. 0°) in these molecules has been explained in terms of a minimization of Se…Se lone pair repulsion.

Experimental

To a vigorously stirred solution of selenium powder (1.19 g, 15 mmol) and absolute ethanol (30 ml), sodium borohydride (0.40 g, 10.6 mmol) was added at 0 °C. The mixture was warmed to room temperature and stirred for 2 h. 2-Chloro-nicotinamide (1.56 g, 10 mmol) was added and stirred for 7 days. O₂ was passed through the solution slowly for 2 h after the reaction mixture was acidfied by glacial acetic. The solvents were removed in vacuo and the residue was extracted with hot dimethyl sulphoxide (DMSO) and filtered. The filtrate was poured into water(200 ml, cooled to 0 °C). The precipitate was separated by filtration and recrystallized from DMSO-CH₃OH(1:2) to give the product as yellow crystals, yield: 1.56 g, 78%; m.p. 124-125 °C. ¹H-NMR (300 MHz, DCCl₃) δ (ppm): 7.27 (d, 2H), 7.81 (s, 2H), 8.14 (d, 2H), 8.32 (s, 2H), 8.48 (s, 2H), 8.65 (s, 2H);⁷⁷Se-NMR (57 MHz, DMSO-d₆) δ (ppm): 524.77.

Refinement

(type here to add refinement details)

Figures

Fig. 1. Structure showing 50 % probability.

2,2'-(Diselane-1,2-diyl)dinicotinamide N,N'-dimethylformamide disolvate

Crystal data	
$C_{12}H_{10}N_4O_2Se_2\cdot 2C_3H_7NO$	Z = 2
$M_r = 546.34$	F(000) = 548
Triclinic, <i>P</i> T	$D_{\rm x} = 1.593 {\rm ~Mg} {\rm ~m}^{-3}$
<i>a</i> = 7.6101 (17) Å	Mo K α radiation, $\lambda = 0.71073$ Å
b = 12.318 (3) Å	Cell parameters from 2815 reflections
c = 13.420 (3) Å	$\theta = 3.1 - 27.5^{\circ}$
$\alpha = 114.175 \ (2)^{\circ}$	$\mu = 3.28 \text{ mm}^{-1}$
$\beta = 91.017 (3)^{\circ}$	T = 298 K
$\gamma = 95.833 \ (3)^{\circ}$	Block, yellow
$V = 1139.3 (4) \text{ Å}^3$	$0.30 \times 0.20 \times 0.20 \text{ mm}$

Data collection

Siemens SMART CCD diffractometer	3937 independent reflections
Radiation source: fine-focus sealed tube	3359 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.0000$
phi and ω scans	$\theta_{\text{max}} = 25.0^{\circ}, \ \theta_{\text{min}} = 1.7^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)	$h = -9 \rightarrow 8$
$T_{\min} = 0.439, T_{\max} = 0.560$	$k = -14 \rightarrow 13$
3937 measured reflections	$l = 0 \rightarrow 15$

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.036$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.097$	H-atom parameters constrained
<i>S</i> = 1.03	$w = 1/[\sigma^2(F_o^2) + (0.0416P)^2 + 0.7097P]$ where $P = (F_o^2 + 2F_c^2)/3$
3937 reflections	$(\Delta/\sigma)_{\rm max} = 0.001$

275 parameters	$\Delta \rho_{max} = 0.38 \text{ e } \text{\AA}^{-3}$
0 restraints	$\Delta \rho_{\rm min} = -0.73 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor wR and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) etc. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Se1	0.44747 (5)	0.90079 (3)	0.43528 (3)	0.04343 (13)
Se2	-0.00660 (5)	0.90803 (3)	0.92023 (2)	0.04228 (13)
N1	0.1532 (5)	0.5410 (3)	0.7795 (2)	0.0635 (10)
H1A	0.1427	0.5036	0.7093	0.076*
H1B	0.2126	0.5139	0.8176	0.076*
N2	0.0893 (4)	0.8848 (2)	1.1107 (2)	0.0425 (7)
N3	0.2600 (5)	0.5278 (3)	0.3920 (3)	0.0592 (9)
H3A	0.2117	0.4794	0.3289	0.071*
H3B	0.2580	0.5066	0.4457	0.071*
N4	0.5588 (4)	0.9107 (3)	0.6373 (2)	0.0486 (7)
N5	0.3752 (5)	0.2618 (4)	0.9343 (3)	0.0708 (10)
N6	0.0494 (5)	0.2208 (3)	0.4807 (2)	0.0551 (8)
01	-0.0074 (4)	0.6808 (2)	0.77632 (19)	0.0673 (9)
02	0.3436 (5)	0.6689 (2)	0.3326 (2)	0.0745 (9)
03	0.3116 (6)	0.4039 (4)	0.8778 (3)	0.1119 (15)
O4	0.1655 (4)	0.4149 (2)	0.5403 (2)	0.0636 (8)
C1	0.0787 (5)	0.6393 (3)	0.8283 (3)	0.0453 (8)
C2	0.0992 (4)	0.7021 (3)	0.9497 (2)	0.0385 (7)
C3	0.1484 (5)	0.6470 (3)	1.0157 (3)	0.0444 (8)
Н3	0.1689	0.5671	0.9840	0.053*
C4	0.1672 (5)	0.7094 (3)	1.1279 (3)	0.0501 (9)
H4	0.1983	0.6727	1.1728	0.060*
C5	0.1388 (5)	0.8271 (3)	1.1708 (3)	0.0481 (9)
Н5	0.1547	0.8700	1.2463	0.058*
C6	0.0676 (4)	0.8226 (3)	1.0022 (2)	0.0359 (7)
C7	0.3379 (5)	0.6354 (3)	0.4068 (3)	0.0485 (9)
C8	0.4199 (5)	0.7156 (3)	0.5172 (3)	0.0415 (8)
С9	0.4458 (6)	0.6768 (3)	0.5990 (3)	0.0555 (10)
Н9	0.4074	0.5980	0.5869	0.067*
C10	0.5283 (6)	0.7548 (4)	0.6982 (3)	0.0649 (12)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

H10	0.5460	0.7299	0.7539	0.078*
C11	0.5836 (6)	0.8695 (4)	0.7131 (3)	0.0597 (11)
H11	0.6417	0.9216	0.7797	0.072*
C12	0.4806 (4)	0.8354 (3)	0.5408 (3)	0.0382 (7)
C13	0.4094 (8)	0.1434 (5)	0.9066 (7)	0.132 (3)
H13A	0.3984	0.0998	0.8285	0.198*
H13B	0.3259	0.1059	0.9390	0.198*
H13C	0.5273	0.1436	0.9334	0.198*
C14	0.3803 (8)	0.3421 (6)	1.0492 (5)	0.1017 (18)
H14A	0.3586	0.4203	1.0564	0.153*
H14B	0.4947	0.3471	1.0833	0.153*
H14C	0.2910	0.3120	1.0842	0.153*
C15	0.3437 (7)	0.3039 (5)	0.8611 (4)	0.0867 (15)
H15	0.3463	0.2508	0.7882	0.104*
C16	-0.0269 (7)	0.1122 (4)	0.3893 (4)	0.0864 (16)
H16A	-0.0493	0.1295	0.3270	0.130*
H16B	-0.1361	0.0820	0.4089	0.130*
H16C	0.0541	0.0530	0.3715	0.130*
C17	0.0853 (7)	0.2161 (4)	0.5860 (4)	0.0791 (14)
H17A	0.1766	0.2791	0.6280	0.119*
H17B	0.1233	0.1400	0.5741	0.119*
H17C	-0.0205	0.2260	0.6252	0.119*
C18	0.0939 (6)	0.3203 (4)	0.4690 (3)	0.0571 (10)
H18	0.0690	0.3193	0.4005	0.069*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Se1	0.0546 (2)	0.0391 (2)	0.0405 (2)	-0.00010 (15)	-0.00515 (15)	0.02201 (17)
Se2	0.0608 (2)	0.0352 (2)	0.02975 (19)	0.00734 (15)	-0.00560 (15)	0.01226 (15)
N1	0.103 (3)	0.051 (2)	0.0322 (15)	0.0285 (19)	-0.0013 (16)	0.0088 (14)
N2	0.0567 (18)	0.0399 (16)	0.0296 (14)	0.0083 (13)	-0.0010 (12)	0.0127 (12)
N3	0.084 (2)	0.0411 (18)	0.0469 (17)	-0.0106 (16)	-0.0191 (16)	0.0181 (15)
N4	0.062 (2)	0.0385 (16)	0.0464 (17)	-0.0001 (14)	-0.0092 (14)	0.0207 (14)
N5	0.062 (2)	0.079 (3)	0.081 (3)	0.0151 (19)	0.0075 (19)	0.041 (2)
N6	0.074 (2)	0.0438 (18)	0.0476 (18)	0.0091 (15)	0.0171 (16)	0.0181 (15)
01	0.113 (2)	0.0510 (16)	0.0310 (12)	0.0239 (16)	-0.0190 (14)	0.0072 (12)
O2	0.125 (3)	0.0538 (17)	0.0457 (15)	-0.0128 (17)	-0.0233 (16)	0.0281 (14)
O3	0.153 (4)	0.094 (3)	0.108 (3)	0.067 (3)	0.014 (3)	0.049 (2)
O4	0.097 (2)	0.0467 (16)	0.0417 (14)	-0.0024 (14)	0.0025 (14)	0.0150 (13)
C1	0.067 (2)	0.0349 (18)	0.0308 (16)	0.0060 (16)	-0.0036 (16)	0.0105 (14)
C2	0.0447 (19)	0.0359 (18)	0.0297 (16)	0.0021 (14)	-0.0026 (13)	0.0090 (14)
C3	0.057 (2)	0.0401 (19)	0.0380 (18)	0.0119 (16)	0.0013 (15)	0.0168 (15)
C4	0.067 (2)	0.053 (2)	0.0384 (18)	0.0134 (18)	0.0000 (17)	0.0252 (17)
C5	0.065 (2)	0.050 (2)	0.0280 (16)	0.0102 (17)	0.0010 (15)	0.0142 (16)
C6	0.0424 (18)	0.0341 (17)	0.0315 (16)	0.0016 (13)	-0.0021 (13)	0.0148 (14)
C7	0.060 (2)	0.041 (2)	0.0445 (19)	0.0041 (16)	-0.0108 (16)	0.0180 (16)
C8	0.048 (2)	0.0393 (18)	0.0399 (18)	0.0020 (15)	-0.0030 (15)	0.0198 (15)

C9 C10 C11 C12 C13 C14 C15 C16 C17 C18	0.080 (3) 0.101 (3) 0.081 (3) 0.0416 (18) 0.086 (4) 0.077 (4) 0.088 (4) 0.102 (4) 0.089 (4) 0.080 (3)	0.040 (2) 0.052 (2) 0.052 (2) 0.0377 (18) 0.098 (5) 0.134 (5) 0.097 (4) 0.050 (3) 0.091 (4) 0.055 (2)	0.051 (2) 0.046 (2) 0.044 (2) 0.0389 (17) 0.256 (9) 0.101 (4) 0.076 (3) 0.081 (3) 0.086 (3) 0.0370 (19)		-0.0009 (18) -0.004 (2) -0.001 (2) 0.0032 (14) 0.029 (3) -0.006 (3) 0.030 (3) -0.009 (2) 0.016 (3) 0.007 (2)	-0.0083 (19) -0.019 (2) -0.0196 (19) -0.0027 (14) 0.059 (5) 0.000 (3) 0.008 (3) 0.031 (3) 0.012 (3) 0.0086 (18)	0.0255 (18) 0.0288 (19) 0.0210 (19) 0.0200 (15) 0.112 (6) 0.061 (4) 0.033 (3) 0.004 (2) 0.064 (3) 0.0202 (19)
Geometric paran	neters (Å, °)						
Se1—C12		1 918 (3)	C3-	C4		1 37	79 (5)
Sel Sel ^{i}		2 3889 (8)	C3-	_нз		0.93	soo
Se2—C6		1.919(3)	C4-			1.36	55 (5)
Se2 Co		23877(7)	C4-	_H4		0.93	300
Se2—Se2		2.3077(7)	C5	н т Ц5		0.92	800
NI—UI NI—HIA		0.8600	C3			1.48	34 (5)
N1—H1B		0.8600	C8-	-C9		1.10	33 (5)
N2—C6		1.336 (4)	C8-	-C12		1.40)3 (5)
N2—C5		1.346 (4)	С9—	-C10		1.37	75 (5)
N3—C7		1.330 (5)	С9—	-H9		0.93	300
N3—H3A		0.8600	C10-	—C11		1.36	53 (5)
N3—H3B		0.8600	C10-	—H10)	0.93	300
N4—C11		1.328 (5)	C11-	—H11		0.93	300
N4—C12		1.330 (4)	C13-	—Н13	A	0.96	500
N5—C15		1.313 (6)	C13-	—Н13	BB	0.96	500
N5-C13		1.403 (6)	C13-	—Н13	SC	0.96	500
N5-C14		1.449 (7)	C14-	—H14	A	0.96	500
N6—C18		1.311 (5)	C14-	—H14	B	0.96	500
N6-C16		1.451 (5)	C14-	—H14	łC	0.96	500
N6—C17		1.460 (5)	C15-	Б—Н15	5	0.93	300
O1—C1		1.233 (4)	C16-	6—H16	δA	0.96	500
O2—C7		1.224 (4)	C16-	—H16	δB	0.96	500
O3—C15		1.210 (6)	C16-	—H16	бC	0.96	500
O4—C18		1.229 (5)	C17-	'—H17	'A	0.96	500
C1—C2		1.487 (4)	C17-	'—H17	'B	0.96	500
C2—C3		1.385 (4)	C17-	/—H17	C .	0.96	500
C2—C6		1.406 (4)	C18-	-H18	3	0.93	300
C12—Se1—Se1 ⁱ		92.21 (10)	C10-	—С9–	-H9	120	.1
C6—Se2—Se2 ⁱⁱ		92.67 (9)	C8—	C9	-H9	120	.1
C1—N1—H1A		120.0	C11-	C10	—С9	118	.6 (3)
C1—N1—H1B		120.0	C11-	C10	—H10	120	.7
H1A—N1—H1B		120.0	С9—	C10-	-H10	120	.7
C6—N2—C5		117.6 (3)	N4	C11-	C10	123	.3 (4)
C7—N3—H3A		120.0	N4	C11-	-H11	118	.3
C7—N3—H3B		120.0	C10-		—H11	118	.3

H3A—N3—H3B	120.0	N4—C12—C8	122.6 (3)
C11—N4—C12	118.4 (3)	N4-C12-Se1	116.3 (2)
C15—N5—C13	123.2 (5)	C8—C12—Se1	121.1 (2)
C15—N5—C14	118.6 (5)	N5-C13-H13A	109.5
C13—N5—C14	118.2 (5)	N5-C13-H13B	109.5
C18—N6—C16	121.4 (4)	H13A—C13—H13B	109.5
C18—N6—C17	119.9 (4)	N5-C13-H13C	109.5
C16—N6—C17	118.6 (4)	H13A—C13—H13C	109.5
O1-C1-N1	121.8 (3)	H13B—C13—H13C	109.5
O1—C1—C2	119.4 (3)	N5-C14-H14A	109.5
N1—C1—C2	118.8 (3)	N5-C14-H14B	109.5
C3—C2—C6	117.2 (3)	H14A—C14—H14B	109.5
C3—C2—C1	122.8 (3)	N5-C14-H14C	109.5
C6—C2—C1	120.0 (3)	H14A—C14—H14C	109.5
C4—C3—C2	120.6 (3)	H14B—C14—H14C	109.5
С4—С3—Н3	119.7	O3—C15—N5	127.4 (5)
С2—С3—Н3	119.7	O3—C15—H15	116.3
C5—C4—C3	117.8 (3)	N5—C15—H15	116.3
C5—C4—H4	121.1	N6-C16-H16A	109.5
C3—C4—H4	121.1	N6-C16-H16B	109.5
N2—C5—C4	124.0 (3)	H16A—C16—H16B	109.5
N2—C5—H5	118.0	N6-C16-H16C	109.5
С4—С5—Н5	118.0	H16A—C16—H16C	109.5
N2—C6—C2	122.7 (3)	H16B—C16—H16C	109.5
N2—C6—Se2	116.1 (2)	N6-C17-H17A	109.5
C2—C6—Se2	121.2 (2)	N6—C17—H17B	109.5
O2—C7—N3	122.0 (3)	H17A—C17—H17B	109.5
O2—C7—C8	120.0 (3)	N6-C17-H17C	109.5
N3—C7—C8	118.0 (3)	H17A—C17—H17C	109.5
C9—C8—C12	117.2 (3)	H17B—C17—H17C	109.5
C9—C8—C7	123.0 (3)	O4—C18—N6	125.9 (4)
C12—C8—C7	119.8 (3)	O4—C18—H18	117.0
С10—С9—С8	119.9 (3)	N6—C18—H18	117.0

Symmetry codes: (i) -x+1, -y+2, -z+1; (ii) -x, -y+2, -z+2.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H···A
N1—H1A···O4	0.86	2.09	2.946 (4)	170
N1—H1B···O3	0.86	2.03	2.869 (5)	163
N3—H3B…O4	0.86	2.10	2.919 (4)	158
N3—H3A···O1 ⁱⁱⁱ	0.86	2.31	3.081 (4)	150
Symmetry codes: (iii) $-x$, $-y+1$, $-z+1$.				

